
<infinity/>

Chat Documentation

The AI Machine UG

February 9, 2026

Legal company name: The AI Machine UG (haftungsbeschraenkt).
Short name used in this document: The AI Machine UG.

Application URL: https://infinity.aimachine.io

Contents
1 Introduction 2

1.1 Mission Statement . 2
1.2 Scope and Reality . 2

2 Core Features 2

3 Security Architecture 2
3.1 Transport and Connectivity . 2
3.2 Session Authentication and Key Schedule . 2
3.3 Message Encryption and AAD Binding . 3
3.4 Replay and Freshness Controls . 3

4 Session Log Model 3
4.1 Current Export Format . 3
4.2 Verification Modes . 3
4.3 What Verification Means . 3

5 User Workflow 4
5.1 Starting a Session . 4
5.2 Sending Messages . 4
5.3 Exporting and Verifying Logs . 4

6 Operational Notes and Limitations 4

7 References 4

1

https://infinity.aimachine.io

1 Introduction
<infinity/> is a browser-based peer-to-peer chat application focused on authenticated session
establishment, encrypted transport, and user-verifiable exported session logs.

1.1 Mission Statement
<infinity/> aims to provide practical private chat with explicit cryptographic verification
controls for exported records. The current design emphasizes session confidentiality in transit
and optional post-session verification of exported logs.

1.2 Scope and Reality
• Real-time chat is peer-to-peer via PeerJS/WebRTC.

• Secure messaging now requires a user-provided shared secret and a key-confirmation hand-
shake.

• Exported logs are encrypted and signed in the current format.

• Legacy plaintext logs can still be verified in compatibility mode.

2 Core Features
• End-to-end encrypted P2P chat transport.

• Shared-secret-bound ECDH key derivation.

• Mutual key confirmation before a link is treated as authenticated.

• Replay and stale-message defenses using per-peer sequence and timestamp checks.

• Encrypted+signed session log export.

• Verification support for signed current logs and unsigned legacy logs.

3 Security Architecture
3.1 Transport and Connectivity
<infinity/> uses PeerJS over WebRTC data channels. The application primarily ships with a
vendored local peerjs.min.js asset and retains CDN fallback loading logic for availability.

3.2 Session Authentication and Key Schedule
For each peer link, the following flow is implemented:

1. ECDH public key exchange (P-256).

2. Shared-secret-bound key derivation using HKDF.

3. Derivation of two session keys:

• encryption key (AES-GCM message encryption/decryption)
• auth key (HMAC-based key confirmation)

4. Mutual key confirmation messages (challenge/proof/ack) before marking the link authen-
ticated.

2

3.3 Message Encryption and AAD Binding
Messages are encrypted with AES-GCM and include per-message metadata:

• 12-byte IV

• sequence number

• sender timestamp

Additional Authenticated Data (AAD) binds sender ID, target ID, sequence, timestamp,
and protocol version so that metadata tampering causes decryption/authentication failure.

3.4 Replay and Freshness Controls
Inbound messages are rejected if:

• envelope structure is invalid,

• sequence is not strictly increasing,

• timestamp is outside configured skew tolerance,

• payload fields exceed validation limits.

4 Session Log Model
4.1 Current Export Format
Current export behavior is encrypted and signed:

• Event-level hash chain using prevEventHash.

• Event hash (SHA-256 canonicalized event content).

• Event signature (Ed25519 over event hash).

• Merkle root over event hashes.

• Full payload encryption using PBKDF2-derived AES-GCM key.

4.2 Verification Modes
• Signed+Encrypted (current): decrypt payload, validate chain, verify signatures, val-

idate Merkle root.

• Unsigned Legacy (compatibility): validate event hash integrity and Merkle root with-
out signature guarantees.

4.3 What Verification Means
• Signed current logs provide cryptographic authenticity relative to the embedded signer

key in the export payload.

• Legacy unsigned verification provides integrity checks only and does not provide signer
authenticity.

3

5 User Workflow
5.1 Starting a Session

1. Choose or generate handle.

2. Enter shared secret.

3. Enter realm and obtain active peer ID.

4. Connect to target peer by full ID.

5.2 Sending Messages
Messages become available once at least one authenticated secure link is established (lock indi-
cator).

5.3 Exporting and Verifying Logs
1. Export uses encrypted+signed format (requires shared secret for encryption).

2. Verification prompts for shared secret when needed.

3. Current signed exports and legacy plaintext exports are both supported.

6 Operational Notes and Limitations
• Security still depends on safe out-of-band exchange of peer IDs and shared secret.

• Signaling infrastructure and STUN/TURN remain external dependencies.

• Log authenticity is tied to included signer key material in each export; out-of-band key
trust policies are still recommended for stronger identity assurances.

7 References
• NIST FIPS 197 (AES): https://csrc.nist.gov/publications/detail/fips/197/fin

al

• NIST SP 800-38D (GCM): https://csrc.nist.gov/publications/detail/sp/800-3
8d/final

• RFC 5869 (HKDF): https://www.rfc-editor.org/rfc/rfc5869

• RFC 8018 (PBKDF2): https://www.rfc-editor.org/rfc/rfc8018

• Web Crypto API: https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypt
o_API

• PeerJS: https://peerjs.com/

• WebRTC: https://webrtc.org/

4

https://csrc.nist.gov/publications/detail/fips/197/final
https://csrc.nist.gov/publications/detail/fips/197/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc8018
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://peerjs.com/
https://webrtc.org/

	Introduction
	Mission Statement
	Scope and Reality

	Core Features
	Security Architecture
	Transport and Connectivity
	Session Authentication and Key Schedule
	Message Encryption and AAD Binding
	Replay and Freshness Controls

	Session Log Model
	Current Export Format
	Verification Modes
	What Verification Means

	User Workflow
	Starting a Session
	Sending Messages
	Exporting and Verifying Logs

	Operational Notes and Limitations
	References

